

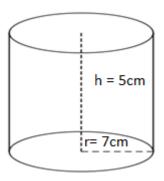
Guía Matemática 2º Medio Volúmenes de cuerpos geométricos

Nombre:	
Curso:	
Fecha:	
Rol:	

INSTRUCCIONES:

Estimado estudiante, la siguiente guía debes desarrollarla por completo <u>en tu cuaderno</u> y señalar además la alternativa correcta, recuerda lo más importante es el desarrollo.

A continuación se presentan las fórmulas y luego se muestran ejemplos paso a paso, para posteriormente mostrar los ejercicios a desarrollar.


La presente guía tendrá una asignación de timbres para la nota de trabajo en clases (máximo 3).

Fórmulas:

CILINDRO RECTO	r = radio h = al tura	$V = \pi r^2 h$
CONO	r = radio h = al tura g = generatriz	$V = \frac{\pi r^2 h}{3}$
ESFERA	 r = radio	$V = \frac{4\pi r^3}{3}$ $A = 4\pi r^2$

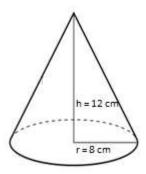
EJEMPLOS:

1- Calcular el volumen del cilindro de la siguiente figura según corresponda:

Formula;

 $V = \pi r^2 h$

Solución:


- Se recolectan los datos de la figura geométrica:
 - Altura h= 5 cm y radio r= 7cm
- Se multiplican el radio dos veces, para calcular su cuadrado

 $7 \text{ cm} \cdot 7 \text{ cm} = 49 \text{ cm}^2$

- Luego se multiplica la altura con el radio al cuadrado:
 - $49 \text{ cm}^2 \cdot 5 \text{ cm} = 245 \text{ cm}^3$
- Se agrega el valor numérico sin cálculo de π al resultado del ejercicio:
 - $245 \, \pi \, cm^3$
- obtiene como resultado el valor del volumen del cilindro:

 $V = 245 \pi \text{ cm}^3$

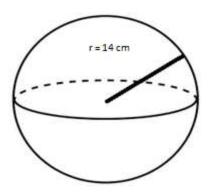
2- Calcular el volumen del cono de la siguiente figura según corresponda:

Formula;

$$V = \frac{\pi r^2 h}{2}$$

Solución:

- Se recolectan los datos de la figura geométrica:
 - Altura h= 12 cm y radio r= 8cm
- Se multiplican el radio dos veces, para calcular su cuadrado
 - $8 \text{ cm} \cdot 8 \text{ cm} = 64 \text{ cm}^2$
- Luego se multiplica la altura con el radio al cuadrado:
 - $64 \text{ cm}^2 \cdot 12 \text{ cm} = 768 \text{ cm}^3$
- Se agrega el valor numérico sin cálculo de π al resultado del ejercicio:
 - $768 \, \pi \, cm^3$
- Luego se divide por el valor 3 y obtiene como resultado el valor del volumen del cono:


 $768 \, \pi \, cm^3 : 3 = 256 \, \pi \, cm^3$

Resultado:

 $V = 256 \pi \text{ cm}^3$

3- Calcular el volumen de la Esfera de la siguiente figura según corresponda:

Formula;

$$V = \frac{4 \pi r^3}{3}$$

Solución:

- Se recolectan los datos de la figura geométrica:

Radio r= 14 cm

- Se multiplican el radio 3 veces, para calcular su cubo

 $14 \text{ cm} \cdot 14 \text{ cm} \cdot 14 \text{ cm} = 2744 \text{ cm}^3$

- Luego se multiplica el valor 4 con el resultado del radio al cubo:

 $4 \cdot 2744 \text{ cm}^3 = 10976 \text{ cm}^3$

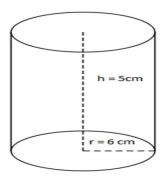
- Se agrega el valor numérico sin cálculo de π al resultado del ejercicio: 10976 π cm 3

- Luego se divide por el valor 3 y obtiene como resultado el valor del volumen de la esfera: $10976~\pi~cm^3: 3 = 3658,66~\pi~cm^3$

Resultado:

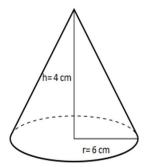
 $V = 3658,66 \text{ m cm}^3$

Observación: También lo puedes dejar expresado en fracción $\frac{10976\pi}{3}$ cm^3

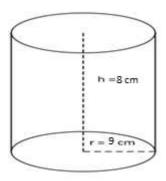

<u>ITEM SELECCIÓN MÚLTIPLE</u>: Lee con atención, resuelve y elige sólo una alternativa para la respuesta correcta. (Justifica cada respuesta)

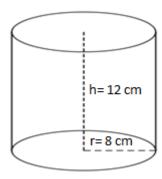
1.- Calcular el volumen del cilindro de la siguiente figura según corresponda:

a) $170 \,\pi \,\text{cm}^3$ b) $180 \,\pi \,\text{cm}^3$

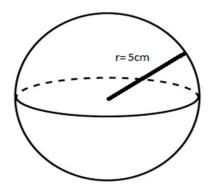

c) $160 \, \pi \, cm^3$

d) $165 \, \pi \, \text{cm}^3$

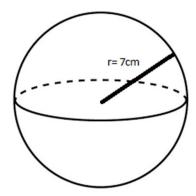


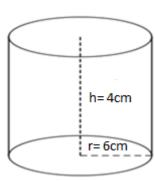

- 2.- Calcular el volumen del cono de la siguiente figura según corresponda:
 - a) $48 \, \pi \, \text{cm}^3$
 - b) $80 \, \pi \, \text{cm}^3$
 - c) $60 \, \pi \, \text{cm}^3$
 - d) $65 \, \pi \, \text{cm}^3$

- 3.- Calcular el volumen del cilindro de la siguiente figura según corresponda:
 - a) $650 \, \pi \, \text{cm}^3$
 - b) $648 \, \pi \, cm^3$
 - c) $520 \, \pi \, \text{cm}^3$
 - d) $684 \, \pi \, \text{cm}^3$

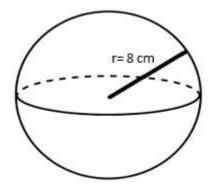


- 4- Calcular el volumen del cilindro de la siguiente figura según corresponda:
 - a) $654 \, \pi \, \text{cm}^3$
 - b) $758 \, \pi \, \text{cm}^3$
 - c) $768 \, \pi \, \text{cm}^3$
 - d) $825 \, \pi \, \text{cm}^3$

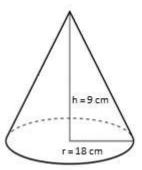



- 5- Calcular el volumen de la Esfera de la siguiente figura según corresponda:
 - a) $156,66 \text{ m cm}^3$
 - b) $176,66 \text{ m cm}^3$
 - c) $166,66 \text{ m cm}^3$
 - d) $184,66 \text{ m cm}^3$

- 6.- Calcular el área de la Esfera de la siguiente figura según corresponda:
 - a) $174 \, \pi \, cm^3$
 - b) $169 \, \pi \, cm^3$
 - c) $196 \, \pi \, \text{cm}^3$
 - d) $180 \, \pi \, cm^3$



- 7- Calcular el volumen del cilindro de la siguiente figura según corresponda:
 - a) $154 \, \text{m} \, \text{cm}^3$
 - b) $134 \, \pi \, cm^3$
 - c) $146 \, \pi \, cm^3$
 - d) $144 \, \pi \, \text{cm}^3$



- 8- Calcular el volumen de la Esfera de la siguiente figura según corresponda:
 - e) $662,66 \text{ m cm}^3$
 - f) $676,66 \text{ m cm}^3$
 - g) $682,66 \text{ m cm}^3$
 - h) $684,66 \text{ m cm}^3$

- 9 Calcular el volumen del cono de la siguiente figura según corresponda:
 - a) $927 \, \pi \, cm^3$
 - b) $872 \, \pi \, \text{cm}^3$
 - c) $972 \, \pi \, cm^3$
 - d) $965 \, \pi \, cm^3$

